Abstract
BackgroundThe public health response to COVID-19 has shifted to reducing deaths and hospitalizations to prevent overwhelming health systems. The amount of SARS-CoV-2 RNA fragments in wastewater are known to correlate with clinical data including cases and hospital admissions for COVID-19. We developed and tested a predictive model for incident COVID-19 hospital admissions in New York State using wastewater data. MethodsUsing county-level COVID-19 hospital admissions and wastewater surveillance covering 13.8 million people across 56 counties, we fit a generalized linear mixed model predicting new hospital admissions from wastewater concentrations of SARS-CoV-2 RNA from April 29, 2020 to June 30, 2022. We included covariates such as COVID-19 vaccine coverage in the county, comorbidities, demographic variables, and holiday gatherings. FindingsWastewater concentrations of SARS-CoV-2 RNA correlated with new hospital admissions per 100,000 up to ten days prior to admission. Models that included wastewater had higher predictive power than models that included clinical cases only, increasing the accuracy of the model by 15%. Predicted hospital admissions correlated highly with observed admissions (r = 0.77) with an average difference of 0.013 hospitalizations per 100,000 (95% CI = [0.002, 0.025]) InterpretationUsing wastewater to predict future hospital admissions from COVID-19 is accurate and effective with superior results to using case data alone. The lead time of ten days could alert the public to take precautions and improve resource allocation for seasonal surges.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.