Abstract
Mangroves are tidal wetlands that are often under strong anthropogenic pressures, despite the numerous ecosystem services they provide. Pollution from urban runoffs is one such threats, yet some mangroves are used as a bioremediation tool for wastewater (WW) treatment. This practice can impact mangrove crabs, which are key engineer species of the ecosystem. Using an experimental area with controlled WW releases, this study aimed to determine from an ecological and ecotoxicological perspective, the effects of WW on the red mangrove crab Neosarmatium africanum. Burrow density and salinity levels (used as a proxy of WW dispersion) were recorded, and a 3-week caging experiment was performed. Hemolymph osmolality, gill Na+/K+-ATPase (NKA) activity and gill redox balance were assessed in anterior and posterior gills of N. africanum. Burrow density decreased according to salinity decreases around the discharged area. Crabs from the impacted area had a lower osmoregulatory capacity despite gill NKA activity remaining undisturbed. The decrease of the superoxide dismutase activity indicates changes in redox metabolism. However, both catalase activity and oxidative damage remained unchanged in both areas but were higher in posterior gills. These results indicate that WW release may induce osmoregulatory and redox imbalances, potentially explaining the decrease in crab density. Based on these results we conclude that WW release should be carefully monitored as crabs are key players involved in the bioremediation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.