Abstract

BackgroundWastewater surveillance has expanded globally as a means to monitor spread of infectious diseases. An inherent challenge is substantial noise and bias in wastewater data because of the sampling and quantification process, limiting the applicability of wastewater surveillance as a monitoring tool.AimTo present an analytical framework for capturing the growth trend of circulating infections from wastewater data and conducting scenario analyses to guide policy decisions.MethodsWe developed a mathematical model for translating the observed SARS-CoV-2 viral load in wastewater into effective reproduction numbers. We used an extended Kalman filter to infer underlying transmissions by smoothing out observational noise. We also illustrated the impact of different countermeasures such as expanded vaccinations and non-pharmaceutical interventions on the projected number of cases using three study areas in Japan during 2021-22 as an example.ResultsObserved notified cases were matched with the range of cases estimated by our approach with wastewater data only, across different study areas and virus quantification methods, especially when the disease prevalence was high. Estimated reproduction numbers derived from wastewater data were consistent with notification-based reproduction numbers. Our projections showed that a 10-20% increase in vaccination coverage or a 10% reduction in contact rate may suffice to initiate a declining trend in study areas.ConclusionOur study demonstrates how wastewater data can be used to track reproduction numbers and perform scenario modelling to inform policy decisions. The proposed framework complements conventional clinical surveillance, especially when reliable and timely epidemiological data are not available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.