Abstract

The capacity of sulfur-reducing bacteria Desulfuromonas acetoxidans IMV B-7384, Geobacter sp. CB35 and Desulfuromusa sp. CB30 and green photosynthesizing bacteria Chlorobium limicola IMV K-8 for exoelectrogenesis was investigated during their growth in wastewater of industrial and municipal origin. The strains of exoelectrogens, which are characterized by resistance to heavy metal ions, were isolated from the man-made Yavorivske lake located in the Lviv Oblast in Ukraine (D. acetoxidans IMV-7384, Ch. limicola IMV K-8) and mine waste heaps of the Chervonohrad mining industry region (Geobacter sp. CB 30 and Desulfuromusa sp. CB 35). Bacteria D. acetoxidans IMВ B-7384 proved to be the most effective exoelectrogens. The power density of a microbial fuel cell (MFC) with the application of D. acetoxidans IMV B-7384 and the infiltrate of the Lviv solid waste landfill was 2.0 ± 0.05 W/m2 and the reduction of chemical oxygen demand of wastewater was 99%. The new approach to improving the MFC performance was investigated. It includes a combination of phototrophic microorganisms Ch. limicola and heterotrophic microorganisms, which reduce the content of nitrates, nitrites, ammonia, sulfates, sulfites, hydrogen sulfide, while simultaneously generating electric current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.