Abstract

The commercialization of microbial fuel cell technology is limited by high operating costs and low electricity production due to poor electron transfer to the anode. Operational costs can be lowered by utilizing waste materials, and cell performance can be improved by anode modification. This study investigated how anode modification with iron compounds changed the efficiency of energy generation and the microbiome of microbial fuel cells fueled with waste volatile fatty acids from a full-scale anaerobic digestion. Anode modification with 2.5 g Fe2O3/m2 increased the power density, current density, and voltage by 3.6-fold, 1.8-fold, and 1.4-fold, respectively. In the microbial fuel cell influent, propionic, enanthic, and iso-caproic acids predominated (60, 15, and 13% of all volatile fatty acids, respectively); in the outflow, propionic (71%) and valeric acids (17%) predominated. In anodic biofilms, Acidovorax sp. were most abundant; they have a great capacity for volatile fatty acids decomposition, and their abundance doubled in the microbial fuel cell with an iron-modified anode. The presence of iron significantly increased the abundance of the genera Pseudomonas and Geothrix, which were mainly responsible for electricity production. These results indicate that anode modification with iron changes the anode microbiome, favoring efficient volatile fatty acids metabolism and a greater abundance of electrogens in the biofilm, which ensures better electricity generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.