Abstract

Waste to energy (WTE) performance is evaluated by maximization of electrical energy production and throughput, while maintaining low operational costs and complying with emission limits. Uncertainty in the quantities, composition and heating values of received wastes, pose severe operability problems and impair performance and emissions. The present work demonstrates and quantifies the possibility of improving WTE efficiency under feedstock uncertainty via oxygen enrichment of the combustion air. Acting essentially as a nitrogen depletion mechanism, oxygen enrichment has reverse effects compared to excess air (EA); synergistic use provides extended capabilities for performance improvement, without impairing final emissions, while satisfying capacity constraints. Increased oxygen enrichment is required at higher EA to maintain temperature. Lower charging rates of rich wastes (plastics, paper, etc.) or diminishing heating values, require higher oxygen enrichment or lower EA. The opposite holds for lower charging rates of poor wastes (biodegradables, biosludge, inerts, etc.) or rising heating values. The results establish the possibility of nominal designs to respond to feedstock variations and may be useful for low range excess air operation (low cost) or adiabatic operation (high EA, combustor temperature controlled by large fluegas volumes). The vector formulation facilitates digital coding for applications featuring multiple waste mixture variability. A 700000 tpa WTE facility in Athens, now under public-private-partnership contract tender is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.