Abstract
This study investigated the effects of waste seaweed compost and rhizosphere bacteria Pseudomonas koreensis HCH2-3 on the tomato seedlings growth in coastal saline soils and chemical properties, enzyme activities, microbial communities of rhizosphere soil. Microcosmic experiment showed that the seaweed compost and rhizosphere bacteria (SC + HCH2-3) significantly alleviated the negative effects of salinity on the growth of tomato seedlings. SC + HCH2-3 amendment significantly increased the plant height and root fresh biomass of tomato seedling by 105.59% and 55.60% in the coastal saline soils, respectively. The soil properties and enzyme activities were also dramatically increased, indicating that the nutrient status of coastal saline soil was improved by SC + HCH2-3 amendment. In addition, Proteobacteria, Actinobacteriota and Firmicutes were the dominant phyla in the rhizosphere soil after adding seaweed compost and rhizosphere bacteria P. koreensis HCH2-3. The relative abundances of Massilia, Azospira, Pseudomonas and Bacillus increased in treatment SC + HCH2-3. Especially, the beneficial bacteria genera, such as Pseudomonas, Bacillus and Azospira, were significantly correlated with the increases of contents of total nitrogen, nitrate nitrogen and ammonium nitrogen in tomato rhizosphere soil samples. Consequently, adding waste seaweed compost and rhizosphere bacteria P. koreensis HCH2-3 into coastal saline soil was suggested as an effective method to relieve salt stress of tomato plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.