Abstract

The acceleration of Fe(III)/Fe(II) conversion in Fenton systems is the critical route to achieve the long-lasting generation of reactive oxygen species towards the oxidation of refractory contaminants. Here, we found that waste leather derived porous carbon materials (LPC), as a simple and readily available metal-free biochar material, can promote the Fe(III)/H2O2 system to generate hydroxyl radicals (•OH) for oxidizing a broad spectrum of contaminants. Results of characterizations, theoretical calculations, and electrochemical tests show that the surface carbonyl groups of LPC can provide electron for direct Fe(III) reduction. More importantly, the graphitic-N on surface of LPC can enhance the reactivity of Fe(III) for accelerating H2O2 induced Fe(III) reduction. The presence of LPC accelerates the Fe(III)/Fe(II) redox cycle in the Fe(III)/H2O2 system, sustainable Fenton chain reactions is thus initiated for long-lasting generation of hydroxyl radicals without adding Fe(II). The continuous flow mode that couples in-situ Fenton-like oxidation and LPC with excellent adsorption catalytic properties, anti-coexisting substances interference and reusability performance enables efficient, green and sustainable degradation of trace organic pollutants. Therefore, the application of metal-free carbon materials in Fenton-like system can solve its rate-limiting problem, reduce the production of iron sludge, achieve green Fenton chemistry, and facilitate the actual engineering application of economic and ecological methods to efficiently remove trace organic contaminants from actual water sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.