Abstract

The heat from exhaust gas of diesel engines can be an important heat source to provide additional power and improve overall engine efficiency. Bottoming Rankine Cycle (RC) is one of the promising techniques to recover heat from the exhaust. One derivative of RC known as Organic Rankine Cycle (ORC) is also suitable for heat recovery for moderate and small size engines as the exhaust heat content and temperature of these engines are low. To recover heat from the exhaust of the engine, an efficient heat exchanger is necessary. In this current research, a shell and tube heat exchanger is optimized by computer simulation for two working fluids, water and HFC-134a. Two shell and tube heat exchangers were purchased and installed into a 40 kW diesel generator. The performance of the heat exchangers using water as the working fluid was then conducted. With the available data, computer simulation was carried out using CFD software ANSYS CFX14.0 to improve the design of the heat exchanger for both fluids. Geometric variables including length, number of tubes, and baffle design are all tested separately. Using the optimized heat exchangers simulation was conducted to estimate the possible additional power generation considering 80% isentropic turbine efficiency. The proposed heat exchanger was able to produce 11% and 9.4 % additional power using water and HFC-134a as the working fluid at maximum working pressure of 15 and 40 bar respectively. This additional power results into 12% and 11% improvement in brake-specific fuel consumption (bsfc) by using water and HFC-134a respectively. This indicates that besides water, organic fluids can also be a suitable option to recover heat from the exhaust of diesel engine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call