Abstract

The main energy consumption sectors are the residential, industry and transport. In all of them, a part of the energy consumption is not used and generally rejected as heat in the environment. This is named the waste heat. Firstly, the main way is to optimize the process to reduce the fuel consumption. Then, if there is a residual waste heat, a valorization way is to convert this heat into electricity. Some technologies are developed. The main technology is the Organic Rankine Cycle engine. Then, a new concept, named Turbosol, is based on the quasi-isothermal expansion of a water and oil mixture in a nozzle. Some piston engines are also developed, based on Stirling, Ericsson and Joule cycles. All these technologies are named externally heated engines. Some other research studies concern the thermo-electric effect and the thermo-magnetic effect. In this article, a non-exhaustive list, with description and comments on these technologies is proposed. The aim is to assess the potential of them and identify the current limits. To compare the different technologies in first law efficiency terms is not sufficient. Some new criterions are proposed. The first consideration is to assess the heat rate consumption referred to the heat rate available. To assess the quality of waste heat to power conversion, it is pertinent to evaluate the power output divided by the available heat rate. Then, because of the second law, it is pertinent to evaluate the exergy recovery ratio. These new waste heat criterions are compared to the classical first law efficiency in different cases. Then, the main current issue is to produce enough electrical power output to ensure the profitability. Some thermo-economic considerations are proposed, including the impact of a waste heat taxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.