Abstract

In this study, the layer-lattice calcium silicate hydrate mineral, tobermorite, was synthesized from waste green or amber container glass and separately ion-exchanged with Ag+ or Zn2+ ions under batch conditions. Hydrothermal treatment of stoichiometrically adjusted mixtures of waste glass and calcium oxide in 4 M NaOH(aq) at 125 °C yielded tobermorite products of ~75% crystallinity with mean silicate chain lengths of 17 units after one week. Maximum uptake of Zn2+ ions, ~0.55 mmol g−1, occurred after 72 h, and maximum uptake of Ag+ ions, ~0.59 mmol g−1, was established within 6 h. No significant differences in structure or ion-exchange behavior were observed between the tobermorites derived from either green or amber glass. Composite membranes of the biopolymer, chitosan, incorporating the original or ion-exchanged tobermorite phases were prepared by solvent casting, and their antimicrobial activities against S. aureus and E. coli were evaluated using the Kirby–Bauer assay. S. aureus and E. coli formed biofilms on pure chitosan and chitosan surfaces blended with the original tobermorites, whereas the composites containing Zn2+-substituted tobermorites defended against bacterial colonization. Distinct, clear zones were observed around the composites containing Ag+-substituted tobermorites which arose from the migration of the labile Ag+ ions from the lattices. This research has indicated that waste glass-derived tobermorites are functional carriers for antimicrobial ions with potential applications as fillers in polymeric composites to defend against the proliferation and transmission of pathogenic bacteria.

Highlights

  • Despite the theoretical potential to recycle up to 90% of container glass, approximately 200 Mt of post-consumer soda-lime-silica glass is landfilled per annum [1]

  • There were no significant differences in the maximum uptakes of Ag+ and Zn2+ ions between the green or amber glass-derived tobermorite products

  • The present study confirms that soda-lime-silica container glass, irrespective of color, represents a suitably reactive and consistent feedstock for the facile hydrothermal synthesis of 11 Å tobermorite

Read more

Summary

Introduction

Despite the theoretical potential to recycle up to 90% of container glass, approximately 200 Mt of post-consumer soda-lime-silica glass is landfilled per annum [1]. Recent research to explore alternative options to upcycle waste container glass ( known as cullet) into value-added products includes the production of zeolites [2,3,4,6,7,8,9,10], silicate minerals [5,11,12,13,14,15,16], geopolymers [17,18,19], and ceramics [20,21,22] for applications in catalysis, sorption/separation technology, and construction In this respect, several studies have utilized a facile one-pot hydrothermal method to synthesize the layer-lattice calcium silicate phase, 11Å tobermorite (Ca5Si6O16(OH)2·4H2O), from a mixture of waste glass cullet and lime or other calcium-bearing wastes [2,5,11,12,13,14,23].

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call