Abstract

Waste eggshells were used to decorate functionalized carbon nanotubes (CNT) and graphene oxide (GO) by hydroxyapatite (HAP) using in situ synthesis. The HAP decorated CNT and GO were characterized by X-ray diffraction, SEM, and IR spectroscopic techniques. CNT-HAP and GO-HAP were further used to prepare polymer nanocomposites by addition of different percentages of synthesized CNT-HAP and GO-HAP as fillers into linear low density polyethylene (LLDPE). The prepared nanocomposites specimens were utilized for physical and thermo-mechanical analysis. Mechanical properties of the LLDPE nanocomposites were improved with increasing the percentage of CNT-HAP and GO-HAP fillers compared to the pristine LLDPE. Hardness of hybrid-CNT-HAP/LLDPE composite was increased as compared to the GO-HAP/LLDPE, where as tensile strength of the GO-HAP/LLDPE was higher than that of the CNT-HAP/LLDPE composite. Flammability of CNT-HAP and GO-HAP composites was decreased by 32% as compared to the pristine LLDPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.