Abstract

Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However, the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD. Another problem with the activated sludge process is that large amount of waste activated sludge is produced, which needs further treatment. In this study, the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions, and the results were compared with those using acetic acid as the carbon source. The use of alkaline fermentation liquid not only affected the transformations of phosphorus, nitrogen, intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid. It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However, the former resulted in higher removal efficiencies for phosphorus (95%) and nitrogen (82%), while the latter showed lower ones (87% and 74%, respectively). The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency. Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source, which was responsible for its higher nitrogen removal efficiency. It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic followed by alternating aerobic-anoxic sequencing batch reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.