Abstract
Wasserstein geometry and information geometry are two important structures to be introduced in a manifold of probability distributions. Wasserstein geometry is defined by using the transportation cost between two distributions, so it reflects the metric of the base manifold on which the distributions are defined. Information geometry is defined to be invariant under reversible transformations of the base space. Both have their own merits for applications. In this study, we analyze statistical inference based on the Wasserstein geometry in the case that the base space is one-dimensional. By using the location-scale model, we further derive the W-estimator that explicitly minimizes the transportation cost from the empirical distribution to a statistical model and study its asymptotic behaviors. We show that the W-estimator is consistent and explicitly give its asymptotic distribution by using the functional delta method. The W-estimator is Fisher efficient in the Gaussian case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.