Abstract
We present a Bayesian framework based on a new exponential likelihood function driven by the quadratic Wasserstien metric. Compared to conventional Bayesian models based on Gaussian likelihood functions driven by the least-squares norm ($L_2$ norm), the new framework features several advantages. First, the new framework does not rely on the likelihood of the measurement noise and hence can treat complicated noise structures such as combined additive and multiplicative noise. Secondly, unlike the normal likelihood function, the Wasserstein-based exponential likelihood function does not usually generate multiple local extrema. As a result, the new framework features better convergence to correct posteriors when a Markov Chain Monte Carlo sampling algorithm is employed. Thirdly, in the particular case of signal processing problems, while a normal likelihood function measures only the amplitude differences between the observed and simulated signals, the new likelihood function can capture both the amplitude and the phase differences. We apply the new framework to a class of signal processing problems, that is, the inverse uncertainty quantification of waveforms, and demonstrate its advantages compared to Bayesian models with normal likelihood functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Uncertainty Quantification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.