Abstract

Federated learning protects the privacy information in the data set by sharing the average gradient. However, "Deep Leakage from Gradient" (DLG) algorithm as a gradient-based feature reconstruction attack can recover privacy training data using gradients shared in federated learning, resulting in private information leakage. However, the algorithm has the disadvantages of slow model convergence and poor inverse generated images accuracy. To address these issues, a Wasserstein distance-based DLG method is proposed, named WDLG. The WDLG method uses Wasserstein distance as the training loss function achieved to improve the inverse image quality and the model convergence. The hard-to-calculate Wasserstein distance is converted to be calculated iteratively using the Lipschit condition and Kantorovich-Rubinstein duality. Theoretical analysis proves the differentiability and continuity of Wasserstein distance. Finally, experiment results show that the WDLG algorithm is superior to DLG in training speed and inversion image quality. At the same time, we prove through the experiments that differential privacy can be used for disturbance protection, which provides some ideas for the development of a deep learning framework to protect privacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call