Abstract

It is shown that under suitable regularity conditions, differential entropy is a Lipschitz functional on the space of distributions on $n$-dimensional Euclidean space with respect to the quadratic Wasserstein distance. Under similar conditions, (discrete) Shannon entropy is shown to be Lipschitz continuous in distributions over the product space with respect to Ornstein's $\bar d$-distance (Wasserstein distance corresponding to the Hamming distance). These results together with Talagrand's and Marton's transportation-information inequalities allow one to replace the unknown multi-user interference with its i.i.d. approximations. As an application, a new outer bound for the two-user Gaussian interference channel is proved, which, in particular, settles the "missing corner point" problem of Costa (1985).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.