Abstract
We introduce various colouring principles which generalise the so-called onto mapping principle of Sierpiński to larger cardinals and general ideals. We prove that these principles capture the notion of an Ulam matrix and allow to characterise large cardinals, most notably weakly compact and ineffable cardinals. We also develop the basic theory of these colouring principles, connecting them to the classical negative square bracket partition relations, proving pumping-up theorems, and deciding various instances of theirs. We also demonstrate that our principles provide a uniform way of obtaining non-saturation results for ideals satisfying a property we call subnormality in contexts where Ulam matrices might not be available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.