Abstract
We introduce a novel model for the origin of the observable universe in which a flat universe with a positive vacuum energy is proceeded by a flat universe with a negative vacuum energy. A negative vacuum energy is consistent with a supersymmetric ground state similar to that predicted by superstring theories. A positive vacuum energy could emerge as a result of the gravitational collapse of the negative vacuum energy universe when the matter temperature reaches a characteristic value where supersymmetry is strongly broken. In principle this allows one to derive all the features of our expanding universe from a single parameter: the magnitude of the pre-big bang negative vacuum energy density. In this paper, a simple model for the big bang is introduced which allows us to use the present day entropy density, and temperature fluctuations of the CMB, together with the present day density of dark matter, to predict the magnitude of the negative vacuum energy. This model for the big bang also makes a dramatic prediction: dark matter consists of compact objects with masses on the order of 104 solar masses. Remarkably this is consistent with numerical simulations for how the primordial fluctuations in the density of dark matter give rise to the observed inhomogeneous distribution of matter in our universe. Our model for the big bang also allows for the production of some compact objects with masses greater than 104 solar masses which are consistent with observations of massive compact objects at the center of the earliest galaxies.
Highlights
We offer a possible resolution of the enigma of what preceded the big bang by noting that a flat Robertson-Walker universe with a negative cosmological constant will naturally evolve via the same kind of quantum dynamics that resolves the problem of gravitational collapse to an expanding inhomogeneous universe containing radiation and dark matter
We indicate how the parameters of the standard cosmological model as well the present day large scale inhomogeneous structure of our universe might be derived from a single parameter: the magnitude of the initial negative vacuum energy.The classical gravitational dynamics of a flat universe with a negative cosmological constant necessarily involves collapse to a density singularity
All of the features of the CMB as well as many features of dark matter follow from our hypothesis that the big bang created a positive vacuum energy with and energy density > (GeV)4
Summary
We offer a possible resolution of the enigma of what preceded the big bang by noting that a flat Robertson-Walker universe with a negative cosmological constant will naturally evolve via the same kind of quantum dynamics that resolves the problem of gravitational collapse to an expanding inhomogeneous universe containing radiation and dark matter. It was suggested some time ago by deSitter, Eddington, and Lemaitre [6] that the observable universe may not have had a singular beginning, but, instead may have originated from a finite size seed. We will assume that in reality a negative cosmological constant does not collapse to a singularity due to quantum effects
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.