Abstract
Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision-making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density-based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets. On this basis, a depthwise separable convolutional neural network (DSCNN) method is proposed for formation recognition. A track simulation system is established to form a track dataset containing three different proportions of clutter, and the formation extraction method is examined using track dataset. Subsequently, the image dataset with eight different types of formation is formulated, on the basis of various detection errors, the DSCNN method for formation recognition is compared with several typical deep learning methods. As exposed in experimental results, the DBSCAN method based on Gaussian kernel can guarantee accurate extraction of formation targets subject to different proportions of clutter. Hence, it is greatly robust and capable of effective formation extraction. Under different radar detection errors, the formation recognition accuracy of DSCNN is 91.5%–99.5%, which achieves performance improvement by up to 12.5% compared with other deep learning methods. The combination of DBSCAN and DSCNN can well realise formation extraction and recognition with different proportions of clutter in tracks and various radar detection errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.