Abstract

Warsaw breakage syndrome, a developmental disorder caused by mutations in the DDX11/ChlR1 helicase, shows cellular features of genome instability similar to Fanconi anemia (FA). Here we report that DDX11-deficient avian DT40 cells exhibit interstrand crosslink (ICL)-induced chromatid breakage, with DDX11 functioning as backup for the FA pathway in regard to ICL repair. Importantly, we establish that DDX11 acts jointly with the 9-1-1 checkpoint clamp and its loader, RAD17, primarily in a postreplicative fashion, to promote homologous recombination repair of bulky lesions, but is not required for intra-S checkpoint activation or efficient fork progression. Notably, we find that DDX11 also promotes diversification of the chicken Ig-variable gene, a process triggered by programmed abasic sites, by facilitating both hypermutation and homeologous recombination-mediated gene conversion. Altogether, our results uncover that DDX11 orchestrates jointly with 9-1-1 and its loader, RAD17, DNA damage tolerance at sites of bulky lesions, and endogenous abasic sites. These functions may explain the essential roles of DDX11 and its similarity with 9-1-1 during development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.