Abstract
In 1994, in [13], N. Papaghiuc introduced the notion of semi-slant submanifold in a Hermitian manifold which is a generalization of CR- and slant-submanifolds. In particular, he considered this submanifold in Kaehlerian manifolds, [13]. Then, in 2007, V. A. Khan and M. A. Khan considered this submanifold in a nearly Kaehler manifold and obtained interesting results, [11]. Recently, we considered semi-slant submanifolds in a locally conformal Kaehler manifold and gave a necessary and sufficient conditions for two distributions (holomorphic and slant) to be integrable. Moreover, we considered these submanifolds in a locally conformal Kaehler space form, [4]. In this paper, we define 2-kind warped product semi-slant submanifolds in a locally conformal Kaehler manifold and consider some properties of these submanifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.