Abstract

Finite element models have been developed of the warpage occurring during the cure of unidirectional carbon fibre-epoxy resin channels. These were based on equivalent experimental channels that were formed on a male mould, with the distortions determined separately after cure and post-cure. To quantify the warpage, the decrease in enclosed angle, or spring forward, of the two corners of the U-shaped cross-sections were calculated; values were determined using displacements from both the finite element predictions and measurements of the experimental channels. The experimental channels were fabricated so that several different factors affecting the distortions could be investigated. These included: fibre orientation; cured or post-cured state; conditions of post-cure; fillet radius of the channel corners; and channel thickness, width and depth. Results across the different channels showed predictions of 1° spring forward where the fibres followed the cross-section profile (0° channels), which were fairly accurate, at 75-85% of the experimental values. However, for the channels that had the fibres aligned parallel to the channel length (90° channels), negligible values were predicted, which were considerably lower in magnitude than the experimental values of 0° to-5° (spring back). Subsequent inhomogeneous models and optical microscopy work indicated that the unpredicted spring back in the more flexible 90° channels was caused by a thin (<0·1 mm) resin layer on the outer surface of all the channels. The small underprediction of spring forward in the stiffer 0° channels was attributed to unmodelled cure shrinkage, which was moderated by some reduced spring back due to the presence of a resin layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call