Abstract
Abstract It is commonly accepted that superluminal travel may be used to facilitate time travel. This is a purely special-relativistic argument, using the fact that for observers in two frames of reference, separated by a spacelike interval, the non-causal (spacelike) future of one observer includes part of the causal past of the other. In this paper we provide a concrete realization of this argument in a curved general-relativistic spacetime, using warp drives as the means of faster-than-light travel. By generalizing the usual warp drive metric to allow for a non-unit lapse function, we allow the warp drive to switch between reference frames in a purely geometric way. With an additional modification allowing the warp drive to have compact support, this permits us to glue two warp drives together to construct a closed timelike geodesic, such that a test particle following the geodesics of the two warp drives travels back to its own past. This provides a precise mathematical model for the connection between faster-than-light travel and time travel in general relativity, and the first such model to be explicitly formulated using two warp drives. We also give a detailed discussion of weak energy condition violations in the non-unit-lapse warp drive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.