Abstract
Massive GPU acceleration processors have been used in high-performance computing systems. The Dennard-scaling has led to power and thermal constraints limiting the performance of such systems. The demand for both increased performance and energy-efficiency is highly desired. This paper presents a multi-layer low-power optimisation method for warps and tasks parallelisms. We present a dynamic frequency regulation scheme for performance parameters in terms of load balance and load imbalance. The method monitors the energy parameters in runtime and adjusts adaptively the voltage level to ensure the performance efficiency with energy reduction. The experimental results show that the multi-layer low-power optimisation with dynamic frequency regulation can achieve 40% energy consumption reduction with only 1.6% performance degradation, thus reducing 59% maximum energy consumption. It can further save about 30% energy consumption in comparison with the single-layer energy optimisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.