Abstract

The contribution of microbial residues to soil organic carbon (SOC) is a process highly influenced by soil properties. We evaluated the presence of microbial amino sugar residues in soil (0–50 cm) of control and warmed plots in an alpine meadow on the Qinghai-Tibet Plateau. Alpine grasslands in the Qinghai-Tibet Plateau store large amounts of soil C and are highly vulnerable to climate change. Results showed that warming significantly increased total microbial residues across the 0–50 cm soil depth. The proportion of microbial-derived C to SOC significantly increased in warmed plots (52% on average) by soil depth compared to the control (38%). Higher microbial turnover and selective preservation into organo-mineral complexes likely explains the observed result. Given insignificant change in total SOC, our results infer an alteration of the SOC source configuration (microbial-derived vs. plant-derived). The observed greater magnitude of warming effects on fungal residues compared to bacterial illustrate a distinct community response to warming. We conclude that warming has the potential to influence soil C sequestration through increased microbial residue inputs, consequently altering its composition and source configuration. Our work provides valuable insights at the molecular level to identify mechanisms of microbial-mediated C processes that are influenced by climate change in high elevation ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.