Abstract

In a downward transplantation experiment, warming stimulated growth and photosynthesis of Schima superba Gardn. et Champ., Syzygium rehderianum Merr. et Perry and Itea chinensis Hook. et Arn. via increased stomatal conductance. Warming had no effect on growth of Machilus breviflora (Benth.) Hemsl., indicating species-specific differences in response to warming. Climate change has been shown to shift species composition and community structure in subtropical forests. Thus, understanding the species-specific responses of growth and physiological processes to warming is essential. To investigate how climate warming affects growth, morphological and physiological performance of co-occurring tree species when they are growing at different altitudes. Soils and 1-year-old seedlings of four subtropical co-occurring tree species (Schima superba Gardn. et Champ., Syzygium rehderianum Merr. et Perry, Itea chinensis Hook. et Arn. and Machilus breviflora (Benth.) Hemsl.) were transplanted to three altitudes (600 m, 300 m and 30 m a.s.l.), inducing an effective warming of 1.0 °C and 1.5 °C. Growth, morphological, and physiological performances of these seedlings were monitored. When exposed to warmer conditions, aboveground growth of the four species except M. breviflora was strongly promoted, accompanied by increased light-saturated photosynthetic rate and stomatal conductance. Warming also significantly increased concentrations of non-structural carbohydrates in leaves of S. rehderianum and M. breviflora, stems of S. superba and S. rehderianum, and roots of I. chinensis. However, we did not detect any effect of warming on stomatal length and stomatal density. Our results provide evidence that climate warming could have species-specific impacts on co-occurring tree species, which might subsequently shift species composition and forest structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.