Abstract

A novel single phased white light emitting phosphor Sr10[(PO4)5.5(BO4)0.5](BO2):Eu2+, Mn2+, Tb3+ was synthesized by solid-state reaction for the first time. The crystal structure, photoluminescence properties and the efficient energy transfer from different Eu2+ sites to Mn2+ and Tb3+ in Sr10[(PO4)5.5(BO4)0.5](BO2) is studied in detail by X-ray diffractometry Rietveld method, luminescence spectra, energy-transfer efficiency and lifetimes. Through effective energy transfer, the wavelength-tunable warm white light can be realized with superior chromaticity coordinates of (0.37, 0.30) and low correlated color temperature (CCT = 3512 K) by coupling the emission bands peaking at 410, 542 and 649 nm attributed to the contribution from Eu2+, Tb3+ and Mn2+, respectively. The results indicate the white phosphor Sr10[(PO4)5.5(BO4)0.5](BO2):Eu2+, Mn2+, Tb3+ can serve as a promising material for phosphor-converted warm white LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.