Abstract

The 1.63 MeV gamma-ray line of Ne-20 is sensitive to protons of lower energies than most other nuclear de-excitation lines. Its unexpected strength has been taken as evidence for a solar flare fast ion distribution that remains steep at low energies, and thus has a large total energy content. It has also been suggested that its strength might instead reflect the enhancement of ion lifetimes that occurs when ambient temperatures exceed 10(7) K. Here we revisit this idea ( a) recognising that ions may be effectively trapped in high temperature regions and (b) taking account of the contribution to the line of all ions above threshold. The strength of the 1.63 MeV line relative to other de-excitation lines has been used to estimate the steepness (e.g. energy power-law index) of the ion distribution. We show that these estimates must be significantly revised if primary ions are contained in a region with temperature in the few 10(7) K range, lower than found elsewhere. Such a region would almost certainly be coronal, so we also briefly review other arguments for and against coronal gamma-ray sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.