Abstract

AbstractToward hydrogen production from renewable sources, coreforming of dilute bioethanol (5 mol% ethanol) and methane using gliding arc discharge warm plasma is reported. For warm plasma alone, increases in methane to ethanol ratio and specific energy input lead to improving hydrogen yield, but low energy efficiency (<60%). The warm plasma coupled with Ni/CeO2/Al2O3 catalyst in a heat‐insulation reactor achieves an energy efficiency of 80%, but the large axial‐temperature drop of the catalyst bed causes low conversions. Therefore, additional heating is provided to maintain the catalyst bed temperature. Under optimal conditions, total carbon conversion of 97% and hydrogen yield of 78% are achieved with an energy cost of 1.16 kWh/Nm3 and energy efficiency of 85%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call