Abstract
AbstractThe pre-main sequence star V1647 Ori started a new outburst in August 2008. From October 2008 to February 2009 we monitored V1647 Ori, obtaining quasi-simultaneous VLT-CRIRES near-IR spectroscopy, VLT-VISIR mid-IR spectroscopy and VLT-FORS2 optical spectroscopy. We studied the evolution of H2 and CO emission from hot and warm gas and Hα and forbidden line-emission during the initial outburst phase of V1647 Ori. Hα is observed in emission displaying P-Cygni profiles with blue-shifted absorption up to –700 km/s, suggesting the presence of a high velocity wind (Fig. 1a). [OI] emission at 6300 Å is observed displaying a blue-shifted emission shoulder, indicating the presence of material moving away from the star (Fig. 1b). We detect H2 1-0 S(1) and CO (P4 to P14 and P30-P38) ro-vibrational lines centered at the velocity of the star at all epochs (Fig. 1c & d). This strongly suggests that the H2 and CO emission originates from a disk and not from a warm outflow. The H2 1–0 S(0) and 2-1 S(1) ro-vibrational lines at 2.22 and 2.24 μm and the pure-rotational H2 0–0 S(1) and 0–0 S(2) lines at 17 and 12 μm were not detected in our spectra. Changes in the Hα and [OI] profiles and the H2 and CO emission observed do not correlate. We modeled the H2 and CO line profiles assuming emission from a flat disk in keplerian rotation with line intensity decreasing with radius (I ~ I0(R/Rmin)−α). We found that the disk of V1647 Ori is observed nearly face-on and that the line emission is produced within a fraction of an AU of the star (Fig. 1d).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.