Abstract

We present results from a homogeneous analysis of the broadband 0.3-10 keV CCD resolution as well as of soft X-ray high-resolution grating spectra of a hard X-ray flux-limited sample of 26 Seyfert galaxies observed with XMM-Newton. Our goal is to characterise the warm absorber (WA) properties along the line-of-sight to the active nucleus. We significantly detect WAs in $65\%$ of the sample sources. Our results are consistent with WAs being present in at least half of the Seyfert galaxies in the nearby Universe, in agreement with previous estimates . We find a gap in the distribution of the ionisation parameter in the range $0.5<\log\xi<1.5$ which we interpret as a thermally unstable region for WA clouds. This may indicate that the warm absorber flow is probably constituted by a clumpy distribution of discrete clouds rather than a continuous medium. The distribution of the WA column densities for the sources with broad Fe K$\alpha$ lines are similar to those sources which do not have broadened emission lines. Therefore the detected broad Fe K$\alpha$ emission lines are bonafide and not artifacts of ionised absorption in the soft X-rays. The WA parameters show no correlation among themselves, with the exception of the ionisation parameter versus column density. The shallow slope of the $\log\xi$ versus $\log v_{\rm out}$ linear regression ($0.12\pm 0.03$) is inconsistent with the scaling laws predicted by radiation or magneto-hydrodynamic-driven winds. Our results suggest also that WA and Ultra Fast Outflows (UFOs) do not represent extreme manifestation of the same astrophysical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.