Abstract

Abstract To investigate the origins of the warm absorbers in active galactic nuclei (AGNs), we study the ionization-state structure of the radiation-driven fountain model in a low-mass AGN and calculate the predicted X-ray spectra utilizing the spectral synthesis code Cloudy. The spectra show many absorption and emission line features originating in the outflowing ionized gas. The O viii 0.654 keV lines are produced mainly in the polar region much closer to the supermassive black hole than the optical narrow-line regions. The absorption measure distribution of the ionization parameter (ξ) at a low inclination spreads over 4 orders of magnitude in ξ, indicating the multiphase ionization structure of the outflow, as actually observed in many type 1 AGNs. We compare our simulated spectra with the high energy resolution spectrum of the narrow-line Seyfert 1 galaxy NGC 4051. The model reproduces slowly outflowing (a few hundred kilometers per second) warm absorbers. However, the faster components with a few thousand kilometers per second observed in NGC 4051 are not reproduced. The simulation also underproduces the intensity and width of the O viii 0.654 keV line. These results suggest that the ionized gas launched from subparsec or smaller regions inside the torus, which is not included in the current fountain model, must be an important ingredient of the warm absorbers with a few thousand kilometers per second. The model also consistently explains the Chandra/HETG spectrum of the Seyfert 2 galaxy Circinus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.