Abstract
The classical Waring problem deals with expressing every natural number as a sum of g(k) kth powers. Similar problems for finite simple groups have been studied recently, and in this paper we study them for finite quasisimple groups G. We show that for a fixed non-trivial group word w and large enough G we have w(G)^3=G, namely every element of G is a product of 3 values of w. For various families of finite quasisimple groups, including covers of alternating groups, we obtain a stronger result, namely w(G)^2=G. However, in contrast with the case of simple groups, we show that w(G)^2 need not equal G for all large G. If k>2 then x^k y^k fails to be surjective for infinitely many finite quasisimple groups. The case k=2 turns out to be exceptional. Indeed, our last result shows that every element of a finite quasisimple group is a product of two squares. This can be regarded as a non-commutative analogue of Lagrange's four squares theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.