Abstract
BackgroundWarfarin is a widely used anticoagulant with a narrow therapeutic index and large interpatient variability in the therapeutic dose. Warfarin sensitivity has been reported to be associated with increased incidence of international normalized ratio (INR) > 5. However, whether warfarin sensitivity is a risk factor for adverse outcomes in critically ill patients remains unknown. In the present study, we aimed to evaluate the utility of different machine learning algorithms for the prediction of warfarin sensitivity and to determine the impact of warfarin sensitivity on outcomes in critically ill patients.MethodsNine different machine learning algorithms for the prediction of warfarin sensitivity were tested in the International Warfarin Pharmacogenetic Consortium cohort and Easton cohort. Furthermore, a total of 7,647 critically ill patients was analyzed for warfarin sensitivity on in-hospital mortality by multivariable regression. Covariates that potentially confound the association were further adjusted using propensity score matching or inverse probability of treatment weighting.ResultsWe found that logistic regression (AUC = 0.879, 95% CI: 0.834–0.924) was indistinguishable from support vector machine with a linear kernel, neural network, AdaBoost and light gradient boosting trees, and significantly outperformed all the other machine learning algorithms. Furthermore, we found that warfarin sensitivity predicted by the logistic regression model was significantly associated with worse in-hospital mortality in critically ill patients with an odds ratio (OR) of 1.33 (95% CI, 1.01–1.77).ConclusionsOur data suggest that the logistic regression model is the best model for the prediction of warfarin sensitivity clinically and that warfarin sensitivity is likely to be a risk factor for adverse outcomes in critically ill patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.