Abstract

ObjectivesAminoglycoside resistance in bacteria is typically conferred by specific drug-modifying enzymes. Infrequently, such resistance is achieved through 16S ribosomal RNA methyltransferases, such as NpmA and KamB encoded by Escherichia coli and Streptoalloteichus tenebrarius, respectively. These enzymes are not widespread and have not been described in Nocardia species to date. MethodsWe report the genomic mining of 18 Nocardia wallacei isolates that were found to be specifically and substantially resistant to amikacin. ResultsWe identified a gene coding for a protein with very distant homology to NpmA and KamB. However, 3-D modeling revealed that the tertiary structure of these three proteins was highly similar. Cloning and expressing this gene in two susceptible bacteria Nocardia asteroides, and Mycobacterium smegmatis (another Actinobacterium) led to high-level, pan-aminoglycoside resistance in both cases. We named this gene warA (Wallacei Amikacin Resistance A). ConclusionsThis is the first description and experimental characterization of a gene of this family in Nocardia, and the first demonstration that such activity could lead to pan-aminoglycoside resistance in Mycobacteria as well. The discovery of this novel gene has important biotechnology and clinical implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call