Abstract

In recent years the Optical Sciences Division, Naval Research Laboratory (NRL) has been involved in the development of real-time hyperspectral detection, cueing, target location, and target designation capabilities. Under the Dark HORSE program it was demonstrated that a hyperspectral sensor could be used for the autonomous, real- time detection of airborne and military ground targets. This work has culminated in WAR HORSE, an autonomous real-time visible hyperspectral target detection system that has been configured for us on a Predator Unmanned Air Vehicle (UAV). The sensor system provides Predator with the ability to detect manmade objects in areas of natural background. The system consists of a visible hyperspectral imaging sensor, a real-time signal processor, a high-resolution visible line scan camera, an interface and control software application, and a data storage medium. The system is coupled to an on- board GPS/INS to provide target geo-location information and relevant data is transmitted to a ground station using line- of-sight down-link capabilities. The presented paper will provide an overview of the WAR HORSE sensor system hardware components and their integration aboard a Predator UAV. In addition, the results of a recently completed demonstration aboard the Predator UAV will be provided. This demonstration represents the first autonomous real-time hyperspectral target detection system to flown aboard a Predator UAV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call