Abstract

In the present paper we use the Wannier function basis to construct lattice approximations of the nonlinear Schrödinger equation with a periodic potential. We show that the nonlinear Schrödinger equation with a periodic potential is equivalent to a vector lattice with long-range interactions. For the case-example of the cosine potential we study the validity of the so-called tight-binding approximation, i.e., the approximation when nearest neighbor interactions are dominant. The results are relevant to the Bose-Einstein condensate theory as well as to other physical systems, such as, for example, electromagnetic wave propagation in nonlinear photonic crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.