Abstract

A guided-mode scattering matrix approach to photonic crystal integrated devices, based on the expansion of the electromagnetic field in Wannier functions is presented and its applicability to large-scale photonic circuits is demonstrated. In particular, we design two components typically used in wavelength division multi/demultiplexing applications, namely, a directional coupler and a Mach-Zehnder interferometer, and we analyze the transmission spectra as a function of the coupler length and/or delay line length, respectively. These examples demonstrate that by cascading basic functional elements, large-scale circuits can be accurately described and efficiently designed with minimal numerical effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.