Abstract
A free semigroup algebra S is the weak-operator-closed (non-self-adjoint) operator algebra generated by n isometries with pairwise orthogonal ranges. A unit vector x is said to be wandering for S if the set of images of x under non-commuting words in the generators of S is orthonormal. We establish the following dichotomy: either a free semigroup algebra has a wandering vector, or it is a von Neumann algebra. Consequences include that every free semigroup algebra is reflexive, and that certain free semigroup algebras are hyper-reflexive with a very small hyper-reflexivity constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.