Abstract

A wandering vector multiplier is a unitary operator which maps the set of wandering vectors for a unitary system into itself. A special case of unitary system is a discrete unitary group. We prove that for many (and perhaps all) discrete unitary groups, the set of wandering vector multipliers is itself a group. We completely characterize the wandering vector multipliers for abelian and ICC unitary groups. Some characterizations of special wandering vector multipliers are obtained for other cases. In particular, there are simple characterizations for diagonal and permutation wandering vector multipliers. Similar results remain valid for irrational rotation unitary systems. We also obtain some results concerning the wandering vector multipliers for those unitary systems which are the ordered products of two unitary groups. There are applications to wavelet systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.