Abstract

We consider Walsh’s conformal map from the exterior of a compact set E subseteq mathbb {C} onto a lemniscatic domain. If E is simply connected, the lemniscatic domain is the exterior of a circle, while if E has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of E and by the exponents and centers of the generalized lemniscate. For general E, we characterize the exponents in terms of the Green’s function of E^c. Under additional symmetry conditions on E, we also locate the centers of the lemniscatic domain. For polynomial pre-images E = P^{-1}(Omega ) of a simply-connected infinite compact set Omega , we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.