Abstract

Fresh harvested walnuts are dehulled, washed, and then dried by hot air (HA) as a continuous process in the industry. The objective of the current work was to study the walnut structure and investigate its effect on the moisture transfer characteristics during the walnut soaking and drying processes. Moisture transport pathways into the walnuts were determined using fluorescence tracer approach, and the hydration kinetics of walnuts under different soaking temperatures (15, 25, and 35 °C) was studied using Peleg model. HA drying experiments in single layer in a self-designed automatic HA dryer at 43 °C and air velocity of 1.41 m/s. The influence of the stem pore (sealed and non-sealed) and the soaking process (0, 2- and 5-min soaking time) on the walnut drying characteristics were investigated systematically. The results indicated that both the presence of the stem pore and the soaking time had significant influence (p < 0.05) on the hydration and drying characteristics of walnuts. Moisture absorptions through the stem pore and the shell were equally important during the soaking process. Two to five minutes soaking process led to 2–4 h additional drying time. This study contributed valuable knowledge for the simulation and prediction of moisture transfer characteristics during the walnut soaking and drying processes. The findings from this study could potentially be applied to the walnut drying industry for more efficient processing

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call