Abstract

Mitophagy has a pivotal protective function in the pathogenesis of neurological disorders. However, the mechanism of its modulation remains elusive, especially in PINK1-mediated mitophagy. Here, we investigated the neuroprotective effects of a walnut-derived peptide, YVLLPSPK, against scopolamine-induced cognitive deficits in mice and explored the underlying PINK1-mediated mitophagy mechanisms in H2O2-treated HT-22 cells. Using the Morris water maze, we showed that YVLLPSPK relieved the cognitive deficiency by alleviating oxidative stress. Mitochondrial morphology was observed in mice hippocampal tissues using transmission electron microscopy (TEM). Both Western blot and immunofluorescence analysis illustrated YVLLPSPK promoted the expression of mitophagy-related proteins and activated the NRF2/KEAP1/HO-1 pathway. Subsequently, an NRF2 inhibitor (ML385) was used to verify the contribution of the YVLLPSPK-regulated NRF2/KEAP1/HO-1 pathway in PINK1-mediated mitophagy in H2O2-treated HT-22 cells. These data suggested that YVLLPSPK improved learning and memory in scopolamine-induced cognitive-impaired mice through a mechanism associated with PINK1-mediated mitophagy via the NRF2/KEAP1/HO-1 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.