Abstract

We study composite solitons, consisting of domain walls and vortex lines attaching to the walls in two-component Bose-Einstein condensates. When the total density of the two components is homogeneous, the system can be mapped to the O(3) nonlinear $\ensuremath{\sigma}$ model for the pseudospin representing the two-component order parameter, and the analytical solutions of the composite solitons can be obtained. Based on the analytical solutions, we discuss the detailed structure of the composite solitons in two-component condensates by employing the generalized nonlinear $\ensuremath{\sigma}$ model, where all degrees of freedom of the original Gross-Pitaevskii theory are active. The domain wall pulled by a vortex is logarithmically bent as a membrane pulled by a pin. It bends more flexibly than the domain wall in the $\ensuremath{\sigma}$ model, because the density inhomogeneity results in a reduction of the domain wall tension from that in the $\ensuremath{\sigma}$ model limit. We find, however, that the curvature of the wall bending pulled by a vortex is still greater than that expected from the reduced tension due to only the density inhomogeneity. Finally, we study the composite soliton structure for actual experimental situations with trapped immiscible condensates under rotation, through numerical simulations of the coupled Gross-Pitaevskii equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.