Abstract

The chemical non-equilibrium method is implemented to investigate wall temperature effects on the hypersonic aerodynamics of the Mars entry capsule named Mars Science Laboratory (MSL). Two isothermal walls (1000 and 2000K) and a radiative-equilibrium wall temperature are used to take account of the temperature effects, respectively. The numerical results show that, the wall temperature has no significant effect on the pressure of the forebody, while influences the pressure of the afterbody remarkably, especially at the separation area. The shear stress of the forebody increases with the wall temperature increased, and the wall temperature affects the shear stress of the afterbody obviously. The wall temperature has no significant effects on the aerodynamics of the forebody. At different wall temperatures, the maximum discrepancy of the forebody's axial force coefficient, normal force coefficient and pitch moment coefficient is merely 0.05%, 1.0% and 1.2%, respectively. The wall temperature impacts the aerodynamics of the afterbody significantly. At different wall temperatures, the maximum discrepancy of axial force coefficient, normal force coefficient and pitch moment coefficient of the afterbody is 55.7%, 26.4% and 61.5%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call