Abstract

In this study, we developed a novel optical-flow algorithm for determining the wall shear-stress on the surface of objects. The algorithm solves the thin-oil-film equation using a numerical scheme that recovers local features neglected by smoothing filters. A variational formulation with a smoothness constraint was applied to extract the global shear-stress fields. The algorithm was then applied to scalar images generated using direct numerical simulation (DNS) method, which revealed that the errors were smaller than those of conventional methods. The application of the proposed algorithm to recover the wall shear-stress on a low-aspect-ratio wing and on an axisymmetric boattail model taken as examples in this study showed a strong potential for analysing shear-stress fields. Compared to the methods used in previous studies, proposed method reveals more local features of separation line and singular points on object surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.