Abstract
Stenotic artery hemodynamics are often characertised by metrics including oscillatory shear index (OSI) and residence time (RT). This analysis was conducted to clarify the link between the near-wall flow behaviour and these resultant flow metrics. A computational simulation was conducted of a stenosed femoral artery, with an idealised representative geometry and a physiologically realistic inlet profile. The overall flow behaviour was characterised through consideration of the axial flow, which was non-dimensionalised against mean flow velocity. The OSI and RT metrics, which are a useful indicator of likely atherosclerotic sites, were explained through a discussion of the WSS values at different time points, the velocity behaviour and velocity profiles, with a particular focus on the near-wall behaviour which influences wall shear stress and the transient evolution of the wall shear stress. While, the stenosis throat experiences high values of wall shear stress, the smooth flow through this contracted region results in low variation in wall shear stress vectors and limited opportunity for any particle stasis. However, regions were noted distal and proximal (though to a lesser extent), where the change in recirculation zones over the cycle created highly elevated regions of both OSI and RT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.