Abstract
This article presents a study on the wall shear rate and mass transfer of impinging jets on a flat plate in the vicinity of stagnation point. The performance of a cross-shaped orifice nozzle was compared with a reference convergent circular nozzle having similar equivalent diameter. An array of electrodiffusion micro probes inserted into the plate was used for wall shear rates measurements. Mass transfer in the impinging region was calculated from the measured wall shear rates for a Reynolds number around 5500 and over a range of streamwise distances between the nozzle and the impinging plane within 1 to 5 nozzle equivalent diameters. The most important observation in the present investigation is that the wall shear rates and the mass transfer in the impingement region of the cross-shaped orifice nozzle are up to 175% and 40%, respectively, higher than that of the convergent nozzle. The performance of the cross-shaped orifice jet is probably related to its particular vortex dynamics characteristic of the near exit region. All the results confirm that the jet passive control enhance the mass transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.