Abstract

The spatio-temporal characteristics of the wall-pressure fluctuations in separated and reattaching flows over a backward-facing step were investigated through pressure-velocity joint measurements carried out using multiple-arrayed microphones and split-film probes. A spoke-wheel-type wake generator was installed upstream of the backward-facing step. The flow structure at the effective forcing frequency (Stf=0.2) was found to be well organized in terms of wall pressure spectrum, cross-correlation, wavenumber-frequency spectrum, and wavelet auto-correlation. Introduction of the unsteady wake (Stf=0.2) reduced the reattachment length by 10%. In addition, the unsteady wake enhanced the turbulence intensity near the separation edge and, as a consequence, enhanced the quadrupole sound sources; however, the turbulence intensity near the reattachment region was weakened and the overall flow noise was attenuated. The greater organization of the flow structure induced by the unsteady wake led to a weakening of the dipole sound sources, which are the dominant sound sources in this system. The dipole sound sources generated by wall pressure fluctuations were calculated using Curle’s integral formula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call